Papers
Topics
Authors
Recent
Search
2000 character limit reached

A General Data Renewal Model for Prediction Algorithms in Industrial Data Analytics

Published 22 Aug 2019 in cs.LG, cs.DB, and stat.ML | (1908.08368v1)

Abstract: In industrial data analytics, one of the fundamental problems is to utilize the temporal correlation of the industrial data to make timely predictions in the production process, such as fault prediction and yield prediction. However, the traditional prediction models are fixed while the conditions of the machines change over time, thus making the errors of predictions increase with the lapse of time. In this paper, we propose a general data renewal model to deal with it. Combined with the similarity function and the loss function, it estimates the time of updating the existing prediction model, then updates it according to the evaluation function iteratively and adaptively. We have applied the data renewal model to two prediction algorithms. The experiments demonstrate that the data renewal model can effectively identify the changes of data, update and optimize the prediction model so as to improve the accuracy of prediction.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.