Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

BIM-assisted object recognition for the on-site autonomous robotic assembly of discrete structures (1908.08209v1)

Published 22 Aug 2019 in cs.RO and cs.CV

Abstract: Robots-operating autonomous assembly applications in an unstructured environment require precise methods to locate the building components on site. However, the current available object detection systems are not well-optimised for construction applications, due to the tedious setups incorporated for referencing an object to a system and inability to cope with the elements imperfections. In this paper, we propose a flexible object pose estimation framework to enable robots to autonomously handle building components on-site with an error tolerance to build a specific design target without the need to sort or label them. We implemented an object recognition approach that uses the virtual representation model of all the objects found in a BIM model to autonomously search for the best-matched objects in a scene. The design layout is used to guide the robot to grasp and manipulate the found elements to build the desired structure. We verify our proposed framework by testing it in an automatic discrete wall assembly workflow. Although the precision is not as expected, we analyse the possible reasons that might cause this imprecision, which paves the path for future improvements.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.