Papers
Topics
Authors
Recent
2000 character limit reached

The doubling metric and doubling measures

Published 20 Aug 2019 in math.GN, math.CA, and math.MG | (1908.07566v2)

Abstract: We introduce the so--called doubling metric on the collection of non--empty bounded open subsets of a metric space. Given a subset $U$ of a metric space $X$, the predecessor $U_{*}$ of $U$ is defined by doubling the radii of all open balls contained inside $U$, and taking their union. If $U$ is open, the predecessor of $U$ is an open set containing $U$. The directed doubling distance between $U$ and another subset $V$ is the number of times that the predecessor operation needs to be applied to $U$ to obtain a set that contains $V$. Finally, the doubling distance between $U$ and $V$ is the maximum of the directed distance between $U$ and $V$ and the directed distance between $V$ and $U$.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.