Warped Proximal Iterations for Monotone Inclusions (1908.07077v5)
Abstract: Resolvents of set-valued operators play a central role in various branches of mathematics and in particular in the design and the analysis of splitting algorithms for solving monotone inclusions. We propose a generalization of this notion, called warped resolvent, which is constructed with the help of an auxiliary operator. The properties of warped resolvents are investigated and connections are made with existing notions. Abstract weak and strong convergence principles based on warped resolvents are proposed and shown to not only provide a synthetic view of splitting algorithms but to also constitute an effective device to produce new solution methods for challenging inclusion problems.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.