Papers
Topics
Authors
Recent
2000 character limit reached

Classification of multivariate skew polynomial rings over finite fields via affine transformations of variables (1908.06833v1)

Published 19 Aug 2019 in math.RA

Abstract: In this work, free multivariate skew polynomial rings are considered, together with their quotients over ideals of skew polynomials that vanish at every point (which includes minimal multivariate skew polynomial rings). We provide a full classification of such multivariate skew polynomial rings (free or not) over finite fields. To that end, we first show that all ring morphisms from the field to the ring of square matrices are diagonalizable, and that the corresponding derivations are all inner derivations. Secondly, we show that all such multivariate skew polynomial rings over finite fields are isomorphic as algebras to a multivariate skew polynomial ring whose ring morphism from the field to the ring of square matrices is diagonal, and whose derivation is the zero derivation. Furthermore, we prove that two such representations only differ in a permutation of the field automorphisms appearing in the corresponding diagonal. The algebra isomorphisms are given by affine transformations of variables and preserve evaluations and degrees. In addition, ours proofs show that the simplified form of multivariate skew polynomial rings can be found computationally and explicitly.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.