Papers
Topics
Authors
Recent
2000 character limit reached

AdaptSPEC-X: Covariate Dependent Spectral Modeling of Multiple Nonstationary Time Series

Published 19 Aug 2019 in stat.ME | (1908.06622v2)

Abstract: We present a method for the joint analysis of a panel of possibly nonstationary time series. The approach is Bayesian and uses a covariate-dependent infinite mixture model to incorporate multiple time series, with mixture components parameterized by a time varying mean and log spectrum. The mixture components are based on AdaptSPEC, a nonparametric model which adaptively divides the time series into an unknown number of segments and estimates the local log spectra by smoothing splines. We extend AdaptSPEC to handle missing values, a common feature of time series which can cause difficulties for nonparametric spectral methods. A second extension is to allow for a time varying mean. Covariates, assumed to be time-independent, are incorporated via the mixture weights using the logistic stick breaking process. The model can estimate time varying means and spectra at observed and unobserved covariate values, allowing for predictive inference. Estimation is performed by Markov chain Monte Carlo (MCMC) methods, combining data augmentation, reversible jump, and Riemann manifold Hamiltonian Monte Carlo techniques. We evaluate the methodology using simulated data, and describe applications to Australian rainfall data and measles incidence in the US. Software implementing the method proposed in this paper is available in the R package BayesSpec.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.