Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Recurrent Graph Syntax Encoder for Neural Machine Translation (1908.06559v1)

Published 19 Aug 2019 in cs.CL and cs.LG

Abstract: Syntax-incorporated machine translation models have been proven successful in improving the model's reasoning and meaning preservation ability. In this paper, we propose a simple yet effective graph-structured encoder, the Recurrent Graph Syntax Encoder, dubbed \textbf{RGSE}, which enhances the ability to capture useful syntactic information. The RGSE is done over a standard encoder (recurrent or self-attention encoder), regarding recurrent network units as graph nodes and injects syntactic dependencies as edges, such that RGSE models syntactic dependencies and sequential information (\textit{i.e.}, word order) simultaneously. Our approach achieves considerable improvements over several syntax-aware NMT models in English$\Rightarrow$German and English$\Rightarrow$Czech translation tasks. And RGSE-equipped big model obtains competitive result compared with the state-of-the-art model in WMT14 En-De task. Extensive analysis further verifies that RGSE could benefit long sentence modeling, and produces better translations.

Citations (8)

Summary

We haven't generated a summary for this paper yet.