Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Forward-Selected Panel Data Approach for Program Evaluation (1908.05894v3)

Published 16 Aug 2019 in econ.EM

Abstract: Policy evaluation is central to economic data analysis, but economists mostly work with observational data in view of limited opportunities to carry out controlled experiments. In the potential outcome framework, the panel data approach (Hsiao, Ching and Wan, 2012) constructs the counterfactual by exploiting the correlation between cross-sectional units in panel data. The choice of cross-sectional control units, a key step in its implementation, is nevertheless unresolved in data-rich environment when many possible controls are at the researcher's disposal. We propose the forward selection method to choose control units, and establish validity of the post-selection inference. Our asymptotic framework allows the number of possible controls to grow much faster than the time dimension. The easy-to-implement algorithms and their theoretical guarantee extend the panel data approach to big data settings.

Summary

We haven't generated a summary for this paper yet.