Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 61 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

With Malice Towards None: Assessing Uncertainty via Equalized Coverage (1908.05428v1)

Published 15 Aug 2019 in stat.ME, cs.CY, stat.AP, and stat.ML

Abstract: An important factor to guarantee a fair use of data-driven recommendation systems is that we should be able to communicate their uncertainty to decision makers. This can be accomplished by constructing prediction intervals, which provide an intuitive measure of the limits of predictive performance. To support equitable treatment, we force the construction of such intervals to be unbiased in the sense that their coverage must be equal across all protected groups of interest. We present an operational methodology that achieves this goal by offering rigorous distribution-free coverage guarantees holding in finite samples. Our methodology, equalized coverage, is flexible as it can be viewed as a wrapper around any predictive algorithm. We test the applicability of the proposed framework on real data, demonstrating that equalized coverage constructs unbiased prediction intervals, unlike competitive methods.

Citations (71)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.