Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Generic Properties of Geodesic Flows on Analytic Hypersurfaces of Euclidean Space (1908.04662v3)

Published 13 Aug 2019 in math.DS

Abstract: Consider the geodesic flow on a real-analytic closed hypersurface $M$ of $\mathbb{R}n$, equipped with the standard Euclidean metric. The flow is entirely determined by the manifold and the Riemannian metric. Typically, geodesic flows are perturbed by varying the metric. In the present paper, however, only the Euclidean metric is used, and instead the manifold $M$ is perturbed. In this context, analogues of the following theorems are proved: the bumpy metric theorem; a theorem of Klingenberg and Takens regarding generic properties of $k$-jets of Poincar\'e maps along geodesics; and the Kupka-Smale theorem. Moreover, the proofs presented here are valid in the real-analytic topology. Together, these results imply the following two main theorems: if $M$ is a real-analytic closed hypersurface in $\mathbb{R}n$ (with $n \geq 3$) on which the geodesic flow with respect to the Euclidean metric has a nonhyperbolic periodic orbit, then $C{\omega}$-generically the geodesic flow on $M$ with respect to the Euclidean metric has a hyperbolic periodic orbit with a transverse homoclinic orbit; and there is a $C{\omega}$-open and dense set of real-analytic, closed, and strictly convex surfaces $M$ in $\mathbb{R}3$ on which the geodesic flow with respect to the Euclidean metric has a hyperbolic periodic orbit with a transverse homoclinic orbit. The methods used here also apply to the classical setting of perturbations of metrics on a Riemannian manifold to obtain real-analytic versions of these theorems in that case. These are among the first perturbation-theoretic results for real-analytic geodesic flows.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube