Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Uncertainty Model Estimation in an Augmented Data Space for Robust State Estimation (1908.04372v1)

Published 12 Aug 2019 in eess.SP

Abstract: The requirement to generate robust robotic platforms is a critical enabling step to allow such platforms to permeate safety-critical applications (i.e., the localization of autonomous platforms in urban environments). One of the primary components of such a robotic platform is the state estimation engine, which enables the platform to reason about itself and the environment based upon sensor readings. When such sensor readings are degraded traditional state estimation approaches are known to breakdown. To overcome this issue, several robust state estimation frameworks have been proposed. One such method is the batch covariance estimation (BCE) framework. The BCE approach enables robust state estimation by iteratively updating the measurement error uncertainty model through the fitting of a Gaussian mixture model (GMM) to the measurement residuals. This paper extends upon the BCE approach by arguing that the uncertainty estimation process should be augmented to include metadata (e.g., the signal strength of the associated GNSS observation). The modification of the uncertainty estimation process to an augmented data space is significant because it increases the likelihood of a unique partitioning in the measurement residual domain and thus provides the ability to more accurately characterize the measurement uncertainty model. The proposed batch covariance estimation over an augmented data-space (BCE-AD) is experimentally validated on collected data where it is shown that a significant increase in state estimation accuracy can be granted compared to previously proposed robust estimation techniques.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.