Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 37 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 111 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 243 tok/s Pro
2000 character limit reached

LSTM vs. GRU vs. Bidirectional RNN for script generation (1908.04332v1)

Published 12 Aug 2019 in cs.CL and cs.LG

Abstract: Scripts are an important part of any TV series. They narrate movements, actions and expressions of characters. In this paper, a case study is presented on how different sequence to sequence deep learning models perform in the task of generating new conversations between characters as well as new scenarios on the basis of a script (previous conversations). A comprehensive comparison between these models, namely, LSTM, GRU and Bidirectional RNN is presented. All the models are designed to learn the sequence of recurring characters from the input sequence. Each input sequence will contain, say "n" characters, and the corresponding targets will contain the same number of characters, except, they will be shifted one character to the right. In this manner, input and output sequences are generated and used to train the models. A closer analysis of explored models performance and efficiency is delineated with the help of graph plots and generated texts by taking some input string. These graphs describe both, intraneural performance and interneural model performance for each model.

Citations (32)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run paper prompts using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.