Papers
Topics
Authors
Recent
2000 character limit reached

Using the Open Meta Kaggle Dataset to Evaluate Tripartite Recommendations in Data Markets (1908.04017v2)

Published 12 Aug 2019 in cs.IR

Abstract: This work addresses the problem of providing and evaluating recommendations in data markets. Since most of the research in recommender systems is focused on the bipartite relationship between users and items (e.g., movies), we extend this view to the tripartite relationship between users, datasets and services, which is present in data markets. Between these entities, we identify four use cases for recommendations: (i) recommendation of datasets for users, (ii) recommendation of services for users, (iii) recommendation of services for datasets, and (iv) recommendation of datasets for services. Using the open Meta Kaggle dataset, we evaluate the recommendation accuracy of a popularity-based as well as a collaborative filtering-based algorithm for these four use cases and find that the recommendation accuracy strongly depends on the given use case. The presented work contributes to the tripartite recommendation problem in general and to the under-researched portfolio of evaluating recommender systems for data markets in particular.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.