Papers
Topics
Authors
Recent
2000 character limit reached

Exploiting Temporal Relationships in Video Moment Localization with Natural Language

Published 11 Aug 2019 in cs.MM, cs.CV, and cs.IR | (1908.03846v1)

Abstract: We address the problem of video moment localization with natural language, i.e. localizing a video segment described by a natural language sentence. While most prior work focuses on grounding the query as a whole, temporal dependencies and reasoning between events within the text are not fully considered. In this paper, we propose a novel Temporal Compositional Modular Network (TCMN) where a tree attention network first automatically decomposes a sentence into three descriptions with respect to the main event, context event and temporal signal. Two modules are then utilized to measure the visual similarity and location similarity between each segment and the decomposed descriptions. Moreover, since the main event and context event may rely on different modalities (RGB or optical flow), we use late fusion to form an ensemble of four models, where each model is independently trained by one combination of the visual input. Experiments show that our model outperforms the state-of-the-art methods on the TEMPO dataset.

Citations (69)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.