Papers
Topics
Authors
Recent
2000 character limit reached

An energy stable $C^0$ finite element scheme for a quasi-incompressible phase-field model of moving contact line with variable density

Published 10 Aug 2019 in math.NA and cs.NA | (1908.03681v2)

Abstract: In this paper, we focus on modeling and simulation of two-phase flow with moving contact lines and variable density. A thermodynamically consistent phase-field model with General Navier Boundary Condition is developed based on the concept of quasi-incompressibility and the energy variational method. Then a mass conserving and energy stable C0 finite element scheme is developed to solve the PDE system. Various numerical simulation results show that the proposed schemes are mass conservative, energy stable and the 2nd order for P1 element and 3rd order for P2 element convergence rate in the sense of L2 norm.

Citations (12)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.