Papers
Topics
Authors
Recent
2000 character limit reached

Reflection groups and 3d $\mathcal{N}\ge $ 6 SCFTs (1908.03346v1)

Published 9 Aug 2019 in hep-th

Abstract: We point out that the moduli spaces of all known 3d $\mathcal{N}=$ 8 and $\mathcal{N}=$ 6 SCFTs, after suitable gaugings of finite symmetry groups, have the form $\mathbb{C}{4r}/\Gamma$ where $\Gamma$ is a real or complex reflection group depending on whether the theory is $\mathcal{N}=$ 8 or $\mathcal{N}=$ 6, respectively. Real reflection groups are either dihedral groups, Weyl groups, or two sporadic cases $H_{3,4}$. Since the BLG theories and the maximally supersymmetric Yang-Mills theories correspond to dihedral and Weyl groups, it is strongly suggested that there are two yet-to-be-discovered 3d $\mathcal{N}=$ 8 theories for $H_{3,4}$. We also show that all known $\mathcal{N}=$ 6 theories correspond to complex reflection groups collectively known as $G(k,x,N)$. Along the way, we demonstrate that two ABJM theories $(SU(N)k\times SU(N){-k})/\mathbb{Z}N$ and $(U(N)_k\times U(N){-k})/\mathbb{Z}_k$ are actually equivalent.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.