Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
114 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
35 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Continual Learning by Asymmetric Loss Approximation with Single-Side Overestimation (1908.02984v2)

Published 8 Aug 2019 in cs.LG and stat.ML

Abstract: Catastrophic forgetting is a critical challenge in training deep neural networks. Although continual learning has been investigated as a countermeasure to the problem, it often suffers from the requirements of additional network components and the limited scalability to a large number of tasks. We propose a novel approach to continual learning by approximating a true loss function using an asymmetric quadratic function with one of its sides overestimated. Our algorithm is motivated by the empirical observation that the network parameter updates affect the target loss functions asymmetrically. In the proposed continual learning framework, we estimate an asymmetric loss function for the tasks considered in the past through a proper overestimation of its unobserved sides in training new tasks, while deriving the accurate model parameter for the observable sides. In contrast to existing approaches, our method is free from the side effects and achieves the state-of-the-art accuracy that is even close to the upper-bound performance on several challenging benchmark datasets.

Citations (38)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.