Papers
Topics
Authors
Recent
2000 character limit reached

Maximum likelihood convolutional beamformer for simultaneous denoising and dereverberation

Published 6 Aug 2019 in eess.AS and cs.SD | (1908.02710v1)

Abstract: This article describes a probabilistic formulation of a Weighted Power minimization Distortionless response convolutional beamformer (WPD). The WPD unifies a weighted prediction error based dereverberation method (WPE) and a minimum power distortionless response beamformer (MPDR) into a single convolutional beamformer, and achieves simultaneous dereverberation and denoising in an optimal way. However, the optimization criterion is obtained simply by combining existing criteria without any clear theoretical justification. This article presents a generative model and a probabilistic formulation of a WPD, and derives an optimization algorithm based on a maximum likelihood estimation. We also describe a method for estimating the steering vector of the desired signal by utilizing WPE within the WPD framework to provide an effective and efficient beamformer for denoising and dereverberation.

Citations (23)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.