Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 94 tok/s
GPT OSS 120B 476 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

A distributed active subspace method for scalable surrogate modeling of function valued outputs (1908.02694v2)

Published 7 Aug 2019 in physics.comp-ph

Abstract: We present a distributed active subspace method for training surrogate models of complex physical processes with high-dimensional inputs and function valued outputs. Specifically, we represent the model output with a truncated Karhunen-Lo`eve (KL) expansion, screen the structure of the input space with respect to each KL mode via the active subspace method, and finally form an overall surrogate model of the output by combining surrogates of individual output KL modes. To ensure scalable computation of the gradients of the output KL modes, needed in active subspace discovery, we rely on adjoint-based gradient computation. The proposed method combines benefits of active subspace methods for input dimension reduction and KL expansions used for spectral representation of the output field. We provide a mathematical framework for the proposed method and conduct an error analysis of the mixed KL active subspace approach. Specifically, we provide an error estimate that quantifies errors due to active subspace projection and truncated KL expansion of the output. We demonstrate the numerical performance of the surrogate modeling approach with an application example from biotransport.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.