Papers
Topics
Authors
Recent
2000 character limit reached

A soft-photon theorem for the Maxwell-Lorentz system (1908.02615v1)

Published 7 Aug 2019 in math-ph, hep-th, math.AP, and math.MP

Abstract: For the coupled system of classical Maxwell-Lorentz equations we show that the quantities \begin{equation*} \mathfrak{F}(\hat x, t)=\lim_{|x|\to \infty} |x|2 F(x,t), \quad \mathcal{F}(\hat k, t)=\lim_{|k|\to 0} |k| \widehat{F}(k,t), \end{equation*} where $F$ is the Faraday tensor, $\hat{F}$ its Fourier transform in space and $\hat{x}:=\frac{x}{|x|}$, are independent of $t$. We combine this observation with the scattering theory for the Maxwell-Lorentz system due to Komech and Spohn, which gives the asymptotic decoupling of $F$ into the scattered radiation $F_{\mathrm{sc},\pm}$ and the soliton field $F_{v_{\pm\infty}}$ depending on the asymptotic velocity $v_{\pm\infty}$ of the electron at large positive (+), resp. negative (-) times. This gives a soft-photon theorem of the form \begin{equation*} \mathcal{F}{\text{sc},+}(\hat{k}) - \mathcal{F}{\text{sc},-}(\hat{k})= -( \mathcal{F}{v{+\infty}}(\hat{k})-\mathcal{F}{v{-\infty}}(\hat{k})), \end{equation*} and analogously for $\mathfrak{F}$, which links the low-frequency part of the scattered radiation to the change of the electron's velocity. Implications for the infrared problem in QED are discussed in the Conclusions.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.