Papers
Topics
Authors
Recent
Search
2000 character limit reached

A soft-photon theorem for the Maxwell-Lorentz system

Published 7 Aug 2019 in math-ph, hep-th, math.AP, and math.MP | (1908.02615v1)

Abstract: For the coupled system of classical Maxwell-Lorentz equations we show that the quantities \begin{equation*} \mathfrak{F}(\hat x, t)=\lim_{|x|\to \infty} |x|2 F(x,t), \quad \mathcal{F}(\hat k, t)=\lim_{|k|\to 0} |k| \widehat{F}(k,t), \end{equation*} where $F$ is the Faraday tensor, $\hat{F}$ its Fourier transform in space and $\hat{x}:=\frac{x}{|x|}$, are independent of $t$. We combine this observation with the scattering theory for the Maxwell-Lorentz system due to Komech and Spohn, which gives the asymptotic decoupling of $F$ into the scattered radiation $F_{\mathrm{sc},\pm}$ and the soliton field $F_{v_{\pm\infty}}$ depending on the asymptotic velocity $v_{\pm\infty}$ of the electron at large positive (+), resp. negative (-) times. This gives a soft-photon theorem of the form \begin{equation*} \mathcal{F}{\text{sc},+}(\hat{k}) - \mathcal{F}{\text{sc},-}(\hat{k})= -( \mathcal{F}{v{+\infty}}(\hat{k})-\mathcal{F}{v{-\infty}}(\hat{k})), \end{equation*} and analogously for $\mathfrak{F}$, which links the low-frequency part of the scattered radiation to the change of the electron's velocity. Implications for the infrared problem in QED are discussed in the Conclusions.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.