Papers
Topics
Authors
Recent
Search
2000 character limit reached

Architecture-aware Network Pruning for Vision Quality Applications

Published 5 Aug 2019 in eess.IV, cs.CV, and cs.LG | (1908.02125v1)

Abstract: Convolutional neural network (CNN) delivers impressive achievements in computer vision and machine learning field. However, CNN incurs high computational complexity, especially for vision quality applications because of large image resolution. In this paper, we propose an iterative architecture-aware pruning algorithm with adaptive magnitude threshold while cooperating with quality-metric measurement simultaneously. We show the performance improvement applied on vision quality applications and provide comprehensive analysis with flexible pruning configuration. With the proposed method, the Multiply-Accumulate (MAC) of state-of-the-art low-light imaging (SID) and super-resolution (EDSR) are reduced by 58% and 37% without quality drop, respectively. The memory bandwidth (BW) requirements of convolutional layer can be also reduced by 20% to 40%.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.