Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Point Cloud Super Resolution with Adversarial Residual Graph Networks (1908.02111v1)

Published 6 Aug 2019 in cs.GR and eess.IV

Abstract: Point cloud super-resolution is a fundamental problem for 3D reconstruction and 3D data understanding. It takes a low-resolution (LR) point cloud as input and generates a high-resolution (HR) point cloud with rich details. In this paper, we present a data-driven method for point cloud super-resolution based on graph networks and adversarial losses. The key idea of the proposed network is to exploit the local similarity of point cloud and the analogy between LR input and HR output. For the former, we design a deep network with graph convolution. For the latter, we propose to add residual connections into graph convolution and introduce a skip connection between input and output. The proposed network is trained with a novel loss function, which combines Chamfer Distance (CD) and graph adversarial loss. Such a loss function captures the characteristics of HR point cloud automatically without manual design. We conduct a series of experiments to evaluate our method and validate the superiority over other methods. Results show that the proposed method achieves the state-of-the-art performance and have a good generalization ability to unseen data.

Citations (44)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.