Introduction to nonlinear discrete systems: Theory and modeling (1908.01497v1)
Abstract: An analysis of discrete systems is important for understanding of various physical processes, such as excitations in crystal lattices and molecular chains, the light propagation in waveguide arrays, and the dynamics of Bose-condensate droplets. In basic physical courses, usually linear properties of discrete systems are studied. In this paper we propose a pedagogical introduction to the theory of nonlinear distributed systems. The main ideas and methods are illustrated using a universal model for different physical applications, the discrete nonlinear Schr\"{o}dinger (DNLS) equation. We consider solutions of the DNLS equation and analyze their linear stability. The notions of nonlinear plane waves, modulational instability, discrete solitons and the anti-continuum limit are introduced and thoroughly discussed. A Mathematica program is provided for better comprehension of results and further exploration. Also, few problems, extending the topic of the paper, for independent solution are given.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.