Papers
Topics
Authors
Recent
2000 character limit reached

Learning to Transport with Neural Networks

Published 4 Aug 2019 in cs.LG and stat.ML | (1908.01394v1)

Abstract: We compare several approaches to learn an Optimal Map, represented as a neural network, between probability distributions. The approaches fall into two categories: ``Heuristics'' and approaches with a more sound mathematical justification, motivated by the dual of the Kantorovitch problem. Among the algorithms we consider a novel approach involving dynamic flows and reductions of Optimal Transport to supervised learning.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.