Learning to Transport with Neural Networks
Abstract: We compare several approaches to learn an Optimal Map, represented as a neural network, between probability distributions. The approaches fall into two categories: ``Heuristics'' and approaches with a more sound mathematical justification, motivated by the dual of the Kantorovitch problem. Among the algorithms we consider a novel approach involving dynamic flows and reductions of Optimal Transport to supervised learning.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.