Faster Guarantees of Evolutionary Algorithms for Maximization of Monotone Submodular Functions
Abstract: In this paper, the monotone submodular maximization problem (SM) is studied. SM is to find a subset of size $\kappa$ from a universe of size $n$ that maximizes a monotone submodular objective function $f$. We show using a novel analysis that the Pareto optimization algorithm achieves a worst-case ratio of $(1-\epsilon)(1-1/e)$ in expectation for every cardinality constraint $\kappa < P$, where $P\leq n+1$ is an input, in $O(nP\ln(1/\epsilon))$ queries of $f$. In addition, a novel evolutionary algorithm called the biased Pareto optimization algorithm, is proposed that achieves a worst-case ratio of $(1-\epsilon)(1-1/e)$ in expectation for every cardinality constraint $\kappa < P$ in $O(n\ln(P)\ln(1/\epsilon))$ queries of $f$. Further, the biased Pareto optimization algorithm can be modified in order to achieve a worst-case ratio of $(1-\epsilon)(1-1/e)$ in expectation for cardinality constraint $\kappa$ in $O(n\ln(1/\epsilon))$ queries of $f$. An empirical evaluation corroborates our theoretical analysis of the algorithms, as the algorithms exceed the stochastic greedy solution value at roughly when one would expect based upon our analysis.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.