Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A Stochastic Primal-Dual Method for Optimization with Conditional Value at Risk Constraints (1908.01086v3)

Published 2 Aug 2019 in math.OC

Abstract: We study a first-order primal-dual subgradient method to optimize risk-constrained risk-penalized optimization problems, where risk is modeled via the popular conditional value at risk (CVaR) measure. The algorithm processes independent and identically distributed samples from the underlying uncertainty in an online fashion, and produces an $\eta/\sqrt{K}$-approximately feasible and $\eta/\sqrt{K}$-approximately optimal point within $K$ iterations with constant step-size, where $\eta$ increases with tunable risk-parameters of CVaR. We find optimized step sizes using our bounds and precisely characterize the computational cost of risk aversion as revealed by the growth in $\eta$. Our proposed algorithm makes a simple modification to a typical primal-dual stochastic subgradient algorithm. With this mild change, our analysis surprisingly obviates the need for a priori bounds or complex adaptive bounding schemes for dual variables assumed in many prior works. We also draw interesting parallels in sample complexity with that for chance-constrained programs derived in the literature with a very different solution architecture.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.