Papers
Topics
Authors
Recent
2000 character limit reached

Falls Prediction in eldery people using Gated Recurrent Units (1908.01050v1)

Published 2 Aug 2019 in cs.LG and stat.ML

Abstract: Falls prevention, especially in older people, becomes an increasingly important topic in the times of aging societies. In this work, we present Gated Recurrent Unit-based neural networks models designed for predicting falls (syncope). The cardiovascular systems signals used in the study come from Gravitational Physiology, Aging and Medicine Research Unit, Institute of Physiology, Medical University of Graz. We used two of the collected signals, heart rate, and mean blood pressure. By using bidirectional GRU model, it was possible to predict the syncope occurrence approximately ten minutes before the manual marker.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.