Papers
Topics
Authors
Recent
2000 character limit reached

Dimers on Riemann surfaces I: Temperleyan forests

Published 2 Aug 2019 in math.PR, math-ph, and math.MP | (1908.00832v3)

Abstract: This is the first article in a series of two papers in which we study the Temperleyan dimer model on an arbitrary bounded Riemann surface of finite topolgical type. The end goal of both papers is to prove the convergence of height fluctuations to a universal and conformally invariant scaling limit. In this part we show that the dimer model on the Temperleyan superposition of a graph embedded on the surface and its dual is well posed, provided that we remove an appropriate number of punctures. We further show that the resulting dimer configuration is in bijection with an object which we call Temperleyan forest, whose law is characterised in terms of a certain topological condition. Finally we discuss the relation between height differences and Temperleyan forest, and give a criterion guaranteeing the convergence of the height fluctuations in terms of the Temperleyan forest.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.