Papers
Topics
Authors
Recent
2000 character limit reached

Towards Surgically-Precise Technical Debt Estimation: Early Results and Research Roadmap

Published 2 Aug 2019 in cs.SE | (1908.00737v1)

Abstract: The concept of technical debt has been explored from many perspectives but its precise estimation is still under heavy empirical and experimental inquiry. We aim to understand whether, by harnessing approximate, data-driven, machine-learning approaches it is possible to improve the current techniques for technical debt estimation, as represented by a top industry quality analysis tool such as SonarQube. For the sake of simplicity, we focus on relatively simple regression modelling techniques and apply them to modelling the additional project cost connected to the sub-optimal conditions existing in the projects under study. Our results shows that current techniques can be improved towards a more precise estimation of technical debt and the case study shows promising results towards the identification of more accurate estimation of technical debt.

Citations (36)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.