Papers
Topics
Authors
Recent
2000 character limit reached

Antiadiabatic Phonons and Superconductivity in Eliashberg-McMillan Theory

Published 2 Aug 2019 in cond-mat.supr-con | (1908.00718v1)

Abstract: The standard Eliashberg - McMillan theory of superconductivity is essentially based on the adiabatic approximation. Here we present some simple estimates of electron - phonon interaction within Eliashberg - McMillan approach in non - adiabatic and even antiadiabatic situation, when characteristic phonon frequency $\Omega_0$ becomes large enough, i.e. comparable or exceeding the Fermi energy $E_F$. We discuss the general definition of Eliashberg - McMillan (pairing) electron - phonon coupling constant $\lambda$, taking into account the finite value of phonon frequencies. We show that the mass renormalization of electrons is in general determined by different coupling constant $\tilde\lambda$, which takes into account the finite width of conduction band, and describes the smooth transition from the adiabatic regime to the region of strong nonadiabaticity. In antiadiabatic limit, when $\Omega_0\gg E_F$, the new small parameter of perturbation theory is $\lambda\frac{E_F}{\Omega_0}\sim\lambda\frac{D}{\Omega_0}\ll 1$ ($D$ is conduction band half -- width), and corrections to electronic spectrum (mass renormalization) become irrelevant. However, the temperature of superconducting transition $T_c$ in antiadiabatic limit is still determined by Eliashberg - McMillan coupling constant $\lambda$. We consider in detail the model with discrete set of (optical) phonon frequencies. A general expression for superconducting transition temperature $T_c$ is derived, which is valid in situation, when one (or several) of such phonons becomes antiadiabatic. We also analyze the contribution of such phonons into the Coulomb pseudopotential $\mu{\star}$ and show, that antiadiabatic phonons do not contribute to Tolmachev's logarithm and its value is determined by partial contributions from adiabatic phonons only.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.