Papers
Topics
Authors
Recent
2000 character limit reached

Tree-Transformer: A Transformer-Based Method for Correction of Tree-Structured Data

Published 1 Aug 2019 in cs.LG, cs.CL, and stat.ML | (1908.00449v1)

Abstract: Many common sequential data sources, such as source code and natural language, have a natural tree-structured representation. These trees can be generated by fitting a sequence to a grammar, yielding a hierarchical ordering of the tokens in the sequence. This structure encodes a high degree of syntactic information, making it ideal for problems such as grammar correction. However, little work has been done to develop neural networks that can operate on and exploit tree-structured data. In this paper we present the Tree-Transformer \textemdash{} a novel neural network architecture designed to translate between arbitrary input and output trees. We applied this architecture to correction tasks in both the source code and natural language domains. On source code, our model achieved an improvement of $25\%$ $\text{F}0.5$ over the best sequential method. On natural language, we achieved comparable results to the most complex state of the art systems, obtaining a $10\%$ improvement in recall on the CoNLL 2014 benchmark and the highest to date $\text{F}0.5$ score on the AESW benchmark of $50.43$.

Citations (42)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.