Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Pointwise convergence of noncommutative Fourier series (1908.00240v5)

Published 1 Aug 2019 in math.OA, math.CA, and math.FA

Abstract: This paper is devoted to the study of pointwise convergence of Fourier series for group von Neumann algebras and quantum groups. It is well-known that a number of approximation properties of groups can be interpreted as summation methods and mean convergence of the associated noncommutative Fourier series. Based on this framework, this paper studies the refined counterpart of pointwise convergence of these Fourier series. As a key ingredient, we develop a noncommutative bootstrap method and establish a general criterion of maximal inequalities for approximate identities of noncommutative Fourier multipliers. Based on this criterion, we prove that for any countable discrete amenable group, there exists a sequence of finitely supported positive definite functions tending to $1$ pointwise, so that the associated Fourier multipliers on noncommutative $L_p$-spaces satisfy the pointwise convergence for all $p>1$. In a similar fashion, we also obtain results for a large subclass of groups (as well as quantum groups) with the Haagerup property and the weak amenability. We also consider the analogues of Fej\'{e}r and Bochner-Riesz means in the noncommutative setting. Our approach heavily relies on the noncommutative ergodic theory in conjunction with abstract constructions of Markov semigroups, inspired by quantum probability and geometric group theory. Finally, we also obtain as a byproduct the dimension free bounds of the noncommutative Hardy-Littlewood maximal inequalities associated with convex bodies.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.