Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Ott-Antonsen ansatz is the only admissible truncation of a circular cumulant series (1908.00230v3)

Published 1 Aug 2019 in cond-mat.stat-mech and cond-mat.dis-nn

Abstract: The cumulant representation is common in classical statistical physics for variables on the real line and the issue of closures of cumulant expansions is well elaborated. The case of phase variables significantly differs from the case of linear ones; the relevant order parameters are the Kuramoto-Daido ones but not the conventional moments. One can formally introduce `circular' cumulants for Kuramoto-Daido order parameters, similar to the conventional cumulants for moments. The circular cumulant expansions allow to advance beyond the Ott-Antonsen theory and consider populations of real oscillators. First, we show that truncation of circular cumulant expansions, except for the Ott-Antonsen case, is forbidden. Second, we compare this situation to the case of the Gaussian distribution of a linear variable, where the second cumulant is nonzero and all the higher cumulants are zero, and elucidate why keeping up to the second cumulant is admissible for a linear variable, but forbidden for circular cumulants. Third, we discuss the implication of this truncation issue to populations of quadratic integrate-and-fire neurons [E. Montbri\'o, D. Paz\'o, A. Roxin, Phys. Rev. X, vol. 5, 021028 (2015)], where within the framework of macroscopic description, the firing rate diverges for any finite truncation of the cumulant series, and discuss how one should handle these situations. Fourth, we consider the cumulant-based low-dimensional reductions for macroscopic population dynamics in the context of this truncation issue. These reductions are applicable, where the cumulant series exponentially decay with the cumulant order, i.e., they form a geometric progression hierarchy. Fifth, we demonstrate the formation of this hierarchy for generic distributions on the circle and experimental data for coupled biological and electrochemical oscillators.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.