Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

The variation of the posterior variance and Bayesian sample size determination (1907.12795v2)

Published 30 Jul 2019 in math.ST and stat.TH

Abstract: We consider Bayesian sample size determination using a criterion that utilizes the first two moments of the expected posterior variance. We study the resulting sample size in dependence on the chosen prior and explore the success rate for bounding the posterior variance below a prescribed limit under the true sampling distribution. Compared with sample size determination based on the expected average of the posterior variance the proposed criterion leads to an increase in sample size and significantly improved success rates. Generic asymptotic properties are proven, such as an asymptotic expression for the sample size and a sort of phase transition. Our study is illustrated using two real world datasets with Poisson and normally distributed data. Based on our results some recommendations are given.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.