Papers
Topics
Authors
Recent
2000 character limit reached

Dynamical trapping in the area-preserving Hénon map (1907.11616v3)

Published 26 Jul 2019 in nlin.CD, math.DS, and physics.comp-ph

Abstract: Stickiness is a well known phenomenon in which chaotic orbits expend an expressive amount of time in specific regions of the chaotic sea. This phenomenon becomes important when dealing with area-preserving open systems because, in this case, it leads to a temporary trapping of orbits in certain regions of phase space. In this work, we propose that the different scenarios of dynamical trapping can be explained by analyzing the crossings between invariant manifolds. In order to corroborate this assertion, we use an adaptive refinement procedure to approximately obtain the sets of homoclinic and heteroclinic intersections for the area-preserving H\'enon map, an archetype of open systems, for a generic parameter interval. We show that these sets have very different statistical properties when the system is highly influenced by dynamical trapping, whereas they present similar properties when stickiness is almost absent. We explain these different scenarios by taking into consideration various effects that occur simultaneously in the system, all of which are connected with the topology of the invariant manifolds.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.