2000 character limit reached
A Phase Transition for Circle Maps with a Flat Spot and Different Critical Exponents
Published 25 Jul 2019 in math.DS | (1907.10909v1)
Abstract: We study circle maps with a flat interval where the critical exponents at the two boundary points of the flat spot might be different. The space of such systems is partitioned in two connected parts whose common boundary only depends on the critical exponents. At this boundary there is a phase transition in the geometry of the system. Differently from the previous approaches, this is achieved by studying the asymptotical behavior of the renormalization operator.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.