Papers
Topics
Authors
Recent
2000 character limit reached

QRMODA and BRMODA: Novel Models for Face Recognition Accuracy in Computer Vision Systems with Adapted Video Streams (1907.10559v1)

Published 24 Jul 2019 in cs.CV and cs.MM

Abstract: A major challenge facing Computer Vision systems is providing the ability to accurately detect threats and recognize subjects and/or objects under dynamically changing network conditions. We propose two novel models that characterize the face recognition accuracy in terms of video encoding parameters. Specifically, we model the accuracy in terms of video resolution, quantization, and actual bit rate. We validate the models using two distinct video datasets and a large image dataset by conducting 1, 668 experiments that involve simultaneously varying combinations of encoding parameters. We show that both models hold true for the deep learning and statistical based face recognition. Furthermore, we show that the models can be used to capture different accuracy metrics, specifically the recall, precision, and F1-score. Ultimately, we provide meaningful insights on the factors affecting the constants of each proposed model.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.