Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Investigating Correlations of Inter-coder Agreement and Machine Annotation Performance for Historical Video Data (1907.10450v1)

Published 24 Jul 2019 in cs.CV, cs.DL, cs.IR, and cs.MM

Abstract: Video indexing approaches such as visual concept classification and person recognition are essential to enable fine-grained semantic search in large-scale video archives such as the historical video collection of former German Democratic Republic (GDR) maintained by the German Broadcasting Archive (DRA). Typically, a lexicon of visual concepts has to be defined for semantic search. However, the definition of visual concepts can be more or less subjective due to individually differing judgments of annotators, which may have an impact on annotation quality and subsequently training of supervised machine learning methods. In this paper, we analyze the inter-coder agreement for historical TV data of the former GDR for visual concept classification and person recognition. The inter-coder agreement is evaluated for a group of expert as well as non-expert annotators in order to determine differences in annotation homogeneity. Furthermore, correlations between visual recognition performance and inter-annotator agreement are measured. In this context, information about image quantity and agreement are used to predict average precision for concept classification. Finally, the influence of expert vs. non-expert annotations acquired in the study are used to evaluate person recognition.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube