Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 61 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 129 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Trees, Parking Functions and Factorizations of Full Cycles (1907.10123v1)

Published 23 Jul 2019 in math.CO

Abstract: Parking functions of length $n$ are well known to be in correspondence with both labelled trees on $n+1$ vertices and factorizations of the full cycle $\sigma_n=(0\,1\,\cdots\,n)$ into $n$ transpositions. In fact, these correspondences can be refined: Kreweras equated the area enumerator of parking functions with the inversion enumerator of labelled trees, while an elegant bijection of Stanley maps the area of parking functions to a natural statistic on factorizations of $\sigma_n$. We extend these relationships in two principal ways. First, we introduce a bivariate refinement of the inversion enumerator of trees and show that it matches a similarly refined enumerator for factorizations. Secondly, we characterize all full cycles $\sigma$ such that Stanley's function remains a bijection when the canonical cycle $\sigma_n$ is replaced by $\sigma$. We also exhibit a connection between our refined inversion enumerator and Haglund's bounce statistic on parking functions.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.