Papers
Topics
Authors
Recent
2000 character limit reached

Haldane's formula in Cannings models: The case of moderately weak selection (1907.10049v4)

Published 23 Jul 2019 in math.PR

Abstract: We introduce a Cannings model with directional selection via a paintbox construction and establish a strong duality with the line counting process of a new \emph{Cannings ancestral selection graph} in discrete time. This duality also yields a formula for the fixation probability of the beneficial type. Haldane's formula states that for a single selectively advantageous individual in a population of haploid individuals of size $N$ the prob-ability of fixation is asymptotically (as $N\to \infty$) equal to the selective advantage of haploids $s_N$ divided by half of the offspring variance. For a class of offspring distributions within Kingman attraction we prove this asymptotics for sequences $s_N$ obeying $N{-1} \ll s_N \ll N{-1/2} $, which is a regime of "moderately weak selection". It turns out that for $ s_N \ll N{-2/3} $ the Cannings ancestral selection graph is so close to the ancestral selection graph of a Moran model that a suitable coupling argument allows to play the problem back asymptotically to the fixation probability in the Moran model, which can be computed explicitly.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.