Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Dual pairs in the Pin-group and duality for the corresponding spinorial representation (1907.09093v1)

Published 22 Jul 2019 in math.RT

Abstract: In this paper, we give a complete picture of Howe correspondence for the setting ($O(E, b), Pin(E, b), \Pi$), where $O(E, b)$ is an orthogonal group (real or complex), $Pin(E, b)$ is the two-fold Pin-covering of $O(E, b)$, and $\Pi$ is the spinorial representation of $Pin(E, b)$. More precisely, for a dual pair ($G, G'$) in $O(E, b)$, we determine explicitly the nature of its preimages $(\tilde{G}, \tilde{G'})$ in $Pin(E, b)$, and prove that apart from some exceptions, $(\tilde{G}, \tilde{G'})$ is always a dual pair in $Pin(E, b)$; then we establish the Howe correspondence for $\Pi$ with respect to $(\tilde{G}, \tilde{G'})$.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.