Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4 33 tok/s Pro
2000 character limit reached

Favourite distances in 3-space (1907.08402v1)

Published 19 Jul 2019 in math.CO, cs.CG, and math.MG

Abstract: Let $S$ be a set of $n$ points in Euclidean $3$-space. Assign to each $x\in S$ a distance $r(x)>0$, and let $e_r(x,S)$ denote the number of points in $S$ at distance $r(x)$ from $x$. Avis, Erd\H{o}s and Pach (1988) introduced the extremal quantity $f_3(n)=\max\sum_{x\in S}e_r(x,S)$, where the maximum is taken over all $n$-point subsets $S$ of 3-space and all assignments $r\colon S\to(0,\infty)$ of distances. We show that if the pair $(S,r)$ maximises $f_3(n)$ and $n$ is sufficiently large, then, except for at most $2$ points, $S$ is contained in a circle $\mathcal{C}$ and the axis of symmetry $\mathcal{L}$ of $\mathcal{C}$, and $r(x)$ equals the distance from $x$ to $C$ for each $x\in S\cap\mathcal{L}$. This, together with a new construction, implies that $f_3(n)=n2/4 + 5n/2 + O(1)$.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.