Papers
Topics
Authors
Recent
2000 character limit reached

Relating random matrix map enumeration to a universal symbol calculus for recurrence operators in terms of Bessel-Appell polynomials (1907.08026v4)

Published 18 Jul 2019 in math-ph, math.MP, and nlin.SI

Abstract: Maps are polygonal cellular networks on Riemann surfaces. This paper analyzes the construction of closed form general representations for the enumerative generating functions associated to maps of fixed but arbitrary genus. The method of construction developed here involves a novel asymptotic symbol calculus for difference operators based on the relation between spectral asymptotics for Hermitian random matrices and asymptotics of orthogonal polynomials with exponential weights. These closed form expressions have a universal character in the sense that they are independent of the explicit valence distribution of the cellular networks within a broad class. Nevertheless the valence distributions may be recovered from the closed form generating functions by a remarkable unwinding identity in terms of Appell polynomials generated by Bessel functions. Our treatment reveals the generating functions to be solutions of nonlinear conservation laws and their prolongations. This characterization enables one to gain insights that go beyond more traditional methods that are purely combinatorial. Universality results are connected to stability results for characteristic singularities of conservation laws that were studied by Caflisch, Ercolani, Hou and Landis as well as directly related to universality results for random matrix spectra.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.