Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Renewal Theory for Transient Markov Chains with Asymptotically Zero Drift (1907.07940v2)

Published 18 Jul 2019 in math.PR

Abstract: We solve the problem of asymptotic behaviour of the renewal measure (Green function) generated by a transient Lamperti's Markov chain $X_n$ in $\mathbf R$, that is, when the drift of the chain tends to zero at infinity. Under this setting, the average time spent by $X_n$ in the interval $(x,x+1]$ is roughly speaking the reciprocal of the drift and tends to infinity as $x$ grows. For the first time we present a general approach relying in a diffusion approximation to prove renewal theorems for Markov chains. We apply a martingale type technique and show that the asymptotic behaviour of the renewal measure heavily depends on the rate at which the drift vanishes. The two main cases are distinguished, either the drift of the chain decreases as $1/x$ or much slower than that, say as $1/x\alpha$ for some $\alpha\in(0,1)$. The intuition behind how the renewal measure behaves in these two cases is totally different. While in the first case $X_n2/n$ converges weakly to a $\Gamma$-distribution and there is no law of large numbers available, in the second case a strong law of large numbers holds true for $X_n{1+\alpha}/n$ and further normal approximation is available.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.