Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Genome-wide Causation Studies of Complex Diseases (1907.07789v1)

Published 17 Jul 2019 in q-bio.GN and stat.AP

Abstract: Despite significant progress in dissecting the genetic architecture of complex diseases by genome-wide association studies (GWAS), the signals identified by association analysis may not have specific pathological relevance to diseases so that a large fraction of disease causing genetic variants is still hidden. Association is used to measure dependence between two variables or two sets of variables. Genome-wide association studies test association between a disease and SNPs (or other genetic variants) across the genome. Association analysis may detect superficial patterns between disease and genetic variants. Association signals provide limited information on the causal mechanism of diseases. The use of association analysis as a major analytical platform for genetic studies of complex diseases is a key issue that hampers discovery of the mechanism of diseases, calling into question the ability of GWAS to identify loci underlying diseases. It is time to move beyond association analysis toward techniques enabling the discovery of the underlying causal genetic strctures of complex diseases. To achieve this, we propose a concept of a genome-wide causation studies (GWCS) as an alternative to GWAS and develop additive noise models (ANMs) for genetic causation analysis. Type I error rates and power of the ANMs to test for causation are presented. We conduct GWCS of schizophrenia. Both simulation and real data analysis show that the proportion of the overlapped association and causation signals is small. Thus, we hope that our analysis will stimulate discussion of GWAS and GWCS.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.