Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Automorphisms of Hilbert schemes of points on surfaces (1907.07064v2)

Published 16 Jul 2019 in math.AG

Abstract: We show that every automorphism of the Hilbert scheme of $n$ points on a weak Fano or general type surface is natural, i.e. induced by an automorphism of the surface, unless the surface is a product of curves and $n=2$. In the exceptional case there exists a unique non-natural automorphism. More generally, we prove that any isomorphism between Hilbert schemes of points on smooth projective surfaces, where one of the surfaces is weak Fano or of general type and not equal to the product of curves, is natural. We also show that every automorphism of the Hilbert scheme of $2$ points on $\mathbb{P}n$ is natural.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.