Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Deep Reinforcement Learning Based Robot Arm Manipulation with Efficient Training Data through Simulation (1907.06884v2)

Published 16 Jul 2019 in cs.RO, cs.SY, and eess.SY

Abstract: Deep reinforcement learning trains neural networks using experiences sampled from the replay buffer, which is commonly updated at each time step. In this paper, we propose a method to update the replay buffer adaptively and selectively to train a robot arm to accomplish a suction task in simulation. The response time of the agent is thoroughly taken into account. The state transitions that remain stuck at the boundary of constraint are not stored. The policy trained with our method works better than the one with the common replay buffer update method. The result is demonstrated both by simulation and by experiment with a real robot arm.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.