Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Method of moments for 3-D single particle ab initio modeling with non-uniform distribution of viewing angles (1907.05377v2)

Published 11 Jul 2019 in math.NA, cs.NA, math.OC, q-bio.BM, and stat.AP

Abstract: Single-particle reconstruction in cryo-electron microscopy (cryo-EM) is an increasingly popular technique for determining the 3-D structure of a molecule from several noisy 2-D projections images taken at unknown viewing angles. Most reconstruction algorithms require a low-resolution initialization for the 3-D structure, which is the goal of ab initio modeling. Suggested by Zvi Kam in 1980, the method of moments (MoM) offers one approach, wherein low-order statistics of the 2-D images are computed and a 3-D structure is estimated by solving a system of polynomial equations. Unfortunately, Kam's method suffers from restrictive assumptions, most notably that viewing angles should be distributed uniformly. Often unrealistic, uniformity entails the computation of higher-order correlations, as in this case first and second moments fail to determine the 3-D structure. In the present paper, we remove this hypothesis, by permitting an unknown, non-uniform distribution of viewing angles in MoM. Perhaps surprisingly, we show that this case is statistically easier than the uniform case, as now first and second moments generically suffice to determine low-resolution expansions of the molecule. In the idealized setting of a known, non-uniform distribution, we find an efficient provable algorithm inverting first and second moments. For unknown, non-uniform distributions, we use non-convex optimization methods to solve for both the molecule and distribution.

Citations (45)

Summary

We haven't generated a summary for this paper yet.