Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Moment-based metrics for molecules computable from cryo-EM images (2401.15183v1)

Published 26 Jan 2024 in q-bio.BM and eess.IV

Abstract: Single particle cryogenic electron microscopy (cryo-EM) is an imaging technique capable of recovering the high-resolution 3-D structure of biological macromolecules from many noisy and randomly oriented projection images. One notable approach to 3-D reconstruction, known as Kam's method, relies on the moments of the 2-D images. Inspired by Kam's method, we introduce a rotationally invariant metric between two molecular structures, which does not require 3-D alignment. Further, we introduce a metric between a stack of projection images and a molecular structure, which is invariant to rotations and reflections and does not require performing 3-D reconstruction. Additionally, the latter metric does not assume a uniform distribution of viewing angles. We demonstrate uses of the new metrics on synthetic and experimental datasets, highlighting their ability to measure structural similarity.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. Zvi Kam. The reconstruction of structure from electron micrographs of randomly oriented particles. Journal of Theoretical Biology, 82(1):15–39, 1980. ISSN 0022-5193. doi: https://doi.org/10.1016/0022-5193(80)90088-0. URL https://www.sciencedirect.com/science/article/pii/0022519380900880.
  2. Anisotropic twicing for single particle reconstruction using autocorrelation analysis. arXiv preprint arXiv:1704.07969, 2017.
  3. Orthogonal matrix retrieval in cryo-electron microscopy. In 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), pages 1048–1052. IEEE, 2015.
  4. 3D ab initio modeling in cryo-EM by autocorrelation analysis. In 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pages 1569–1573. IEEE, 2018.
  5. Estimation under group actions: Recovering orbits from invariants. Applied and Computational Harmonic Analysis, 2023.
  6. Orthogonal Matrix Retrieval with Spatial Consensus for 3D Unknown View Tomography. SIAM Journal on Imaging Sciences, 16(3):1398–1439, 2023.
  7. Autocorrelation analysis for cryo-EM with sparsity constraints: Improved sample complexity and projection-based algorithms. Proceedings of the National Academy of Sciences, 120(18):e2216507120, 2023.
  8. Method of moments for 3-D single particle ab initio modeling with non-uniform distribution of viewing angles. Inverse Problems, 36(4):044003, feb 2020. doi: 10.1088/1361-6420/ab6139.
  9. Compactification of the rigid motions group in image processing. SIAM Journal on Imaging Sciences, 15(3):1041–1078, 2022. doi: 10.1137/21M1429448. URL https://doi.org/10.1137/21M1429448.
  10. H. M. Berman. The Protein Data Bank. Nucleic Acids Research, 28(1):235–242, January 2000. ISSN 13624962. doi: 10.1093/nar/28.1.235. URL https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/28.1.235.
  11. DLMF. NIST Digital Library of Mathematical Functions. https://dlmf.nist.gov/, Release 1.1.11 of 2023-09-15. URL https://dlmf.nist.gov/. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds.
  12. Computing steerable principal components of a large set of images and their rotations. IEEE Transactions on Image Processing, 20(11):3051–3062, 2011.
  13. Glen E. Bredon. Topology and geometry. 1993. URL https://api.semanticscholar.org/CorpusID:203432300.
  14. Sjors HW Scheres. RELION: implementation of a Bayesian approach to cryo-EM structure determination. Journal of Structural Biology, 180(3):519–530, 2012a.
  15. Sjors HW Scheres. A Bayesian view on cryo-EM structure determination. Journal of Molecular Biology, 415(2):406–418, 2012b.
  16. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Science, 30(1):70–82, 2020. doi: 10.1002/pro.3943.
  17. Aaditya V Rangan. Radial recombination for rigid rotational alignment of images and volumes. Inverse Problems, 39(1):015003, nov 2022. doi: 10.1088/1361-6420/aca047. URL https://dx.doi.org/10.1088/1361-6420/aca047.
  18. Three-dimensional alignment of density maps in cryo-electron microscopy. Biological Imaging, 3:e8, 2023. doi: 10.1017/S2633903X23000089.
  19. Classification and 3d averaging with missing wedge correction in biological electron tomography. Journal of Structural Biology, 162(3):436–450, June 2008. ISSN 1047-8477. doi: 10.1016/j.jsb.2008.02.008. URL http://dx.doi.org/10.1016/j.jsb.2008.02.008.
  20. High-throughput subtomogram alignment and classification by fourier space constrained fast volumetric matching. Journal of Structural Biology, 178(2):152–164, 2012. ISSN 1047-8477. doi: https://doi.org/10.1016/j.jsb.2012.02.014. URL https://www.sciencedirect.com/science/article/pii/S1047847712000676. Special Issue: Electron Tomography.
  21. Alignment of density maps in Wasserstein distance. arXiv preprint arXiv:2305.12310, 2023.
  22. Real time structural search of the Protein Data Bank. PLoS Computational Biology, 16(7):e1007970, 2020.
  23. What could go wrong? A practical guide to single-particle cryo-EM: From biochemistry to atomic models. Journal of Chemical Information and Modeling, 60(5):2458–2469, May 2020. ISSN 1549-9596, 1549-960X. doi: 10.1021/acs.jcim.9b01178. URL https://pubs.acs.org/doi/10.1021/acs.jcim.9b01178.
  24. Cumulated gain-based evaluation of IR techniques. ACM Transactions on Information Systems (TOIS), 20(4):422–446, 2002.
  25. Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of Machine Learning Research, 9(11), 2008.
  26. Structure, function and pharmacology of human itch receptor complexes. Nature, 600(7887):164–169, 2021. doi: 10.1038/s41586-021-04077-y.
  27. Geoffrey S. Watson. Distributions on the circle and sphere. Journal of Applied Probability, 19(A):265–280, 1982. doi: 10.2307/3213566.
  28. Garrett Wright and et al. ASPIRE – Algorithms for single particle reconstruction software package, 2023. URL http://spr.math.princeton.edu/.
  29. Classification of single particles from human cell extract reveals distinct structures. Cell Reports, 24(1):259–268.e3, July 2018. ISSN 2211-1247. doi: 10.1016/j.celrep.2018.06.022.
  30. Hydration-layer models for cryo-em image simulation. Journal of Structural Biology, 180(1):10–16, 2012.
  31. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. Journal of Molecular Biology, 333(4):721–745, 2003.
  32. EMPIAR: the electron microscopy public image archive. Nucleic Acids Research, 51(D1):D1503–D1511, 11 2022. ISSN 0305-1048. doi: 10.1093/nar/gkac1062. URL https://doi.org/10.1093/nar/gkac1062.
  33. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nature methods, 14(3):290–296, 2017.
  34. Modular assembly of the bacterial large ribosomal subunit. Cell, 167(6):1610–1622.e15, 2016. ISSN 0092-8674. doi: https://doi.org/10.1016/j.cell.2016.11.020. URL https://www.sciencedirect.com/science/article/pii/S0092867416315926.
  35. Jack Turner and The wwPDB consortium. EMDB - the Electron Microscopy Data Bank, 2023. URL https://doi.org/10.1101/2023.10.03.560672.
  36. Deep neural-network prior for orbit recovery from method of moments. arXiv preprint arXiv:2304.14604, 2023.
  37. Angular momentum in quantum physics: Theory and application, volume 8 of Encyclopedia of Mathematics and its Applications. Addison-Wesley Publishing Co., Reading, M.A., 1981. ISBN 0-201-13507-8.
  38. A parallel nonuniform fast Fourier transform library based on an “Exponential of semicircle”’ kernel. SIAM Journal on Scientific Computing, 41(5):C479–C504, 2019.
  39. Alex H Barnett. Aliasing error of the exp⁡(β⁢1−z2)𝛽1superscript𝑧2\exp(\beta\sqrt{1-z^{2}})roman_exp ( italic_β square-root start_ARG 1 - italic_z start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) kernel in the nonuniform fast fourier transform. Applied and Computational Harmonic Analysis, 51:1–16, 2021.
  40. Robust parameterization of elastic and absorptive electron atomic scattering factors. Acta Crystallographica Section A - ACTA CRYSTALLOGR A, 52:257–276, 03 1996. doi: 10.1107/S0108767395014371.
  41. Amit Singer. Wilson statistics: Derivation, generalization and applications to electron cryomicroscopy. Acta Crystallographica. Section A, Foundations and Advances, 77(Pt 5):472—479, September 2021. ISSN 2053-2733. doi: 10.1107/s205327332100752x. URL https://doi.org/10.1107/S205327332100752X.
  42. Computing Fourier transforms and convolutions on the 2-sphere. Advances in Applied Mathematics, 15(2):202–250, 1994.
  43. SHTools: Tools for working with spherical harmonics. Geochemistry, Geophysics, Geosystems, 19(8):2574–2592, 2018.
  44. Fast principal component analysis for cryo-electron microscopy images. Biological Imaging, 3:e2, 2023a. doi: 10.1017/S2633903X23000028.
  45. Fast expansion into harmonics on the disk: A steerable basis with fast radial convolutions. SIAM Journal on Scientific Computing, 45(5):A2431–A2457, 2023b. doi: 10.1137/22M1542775. URL https://doi.org/10.1137/22M1542775.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com