Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Domain Adaptation-based Augmentation for Weakly Supervised Nuclei Detection (1907.04681v1)

Published 10 Jul 2019 in eess.IV and cs.CV

Abstract: The detection of nuclei is one of the most fundamental components of computational pathology. Current state-of-the-art methods are based on deep learning, with the prerequisite that extensive labeled datasets are available. The increasing number of patient cohorts to be analyzed, the diversity of tissue stains and indications, as well as the cost of dataset labeling motivates the development of novel methods to reduce labeling effort across domains. We introduce in this work a weakly supervised 'inter-domain' approach that (i) performs stain normalization and unpaired image-to-image translation to transform labeled images on a source domain to synthetic labeled images on an unlabeled target domain and (ii) uses the resulting synthetic labeled images to train a detection network on the target domain. Extensive experiments show the superiority of the proposed approach against the state-of-the-art 'intra-domain' detection based on fully-supervised learning.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.